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Abstract 

Clean Peak Standards (“CPS”) have been proposed as a method to better align renewable 

generation with periods of higher electricity demand and higher emissions, by requiring that a 

percentage of peak period demand be met with renewables or clean-charged energy storage. 

Proponents argue that CPS can reduce costs, reduce emissions, and improve market efficiency.   

Using a production-cost and capacity-expansion optimization model, we assess how CPS may affect 

wholesale market outcomes.  We parameterize the model to approximate the New England system, 

and we test combinations of CPS and Renewable Portfolio Standards (RPS) that reflect needs into 

the 2040s.  

In some instances, we find that CPS are ineffective and expensive; in others, we observe that CPS 

make the grid dirtier and more expensive.  CPS offer de minimis reductions in production costs 

(<1%), suggesting efficiency is not improved.  Depending on formulation, CPS lead to modest 

increases in carbon emissions (<2%), or modest reductions.  Reductions, when present, come at 

high cost: RPS can reduce emissions by 5-10 times more, per dollar spent.  Despite the paucity of 

benefits, CPS increase system costs (<5%). These results suggest that regulators can achieve similar 

market and environmental outcomes, at lower cost, if they simply do not implement CPS.   
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1. Introduction 

As states continue to push for larger quantities of renewable resources, policymakers have started 

to look for new tools to ensure that the capacity they procure will maximize value to consumers and 

to the grid.  Historically, states have relied on Renewable Portfolio Standards (“RPS”) – which 

require that a specified percentage of annual electricity sales come from renewable resources – to 

“green” the grid.  To date, more than half of states have established binding RPS or non-binding 

renewable energy goals and approximately half of all growth in US renewables is associated with 

RPS requirements.1  As the quantity of wind and solar on the grid increases, some have questioned 

whether RPS alone will lead to efficient capacity buildout.  In states like California, the infamous 

“duck curve” is putting more strain on the grid by creating shorter-but-steeper ramping events.  

Higher renewable penetrations may cause similar needs in other jurisdictions.  Over the long run, 

quantity maximizing policies may create periods of renewable oversupply in lower load seasons, 

“spilling” renewable energy.   

Recently, several states have a proposed a relatively new concept: the Clean Peak Standard 

(“CPS”).  A CPS requires that a certain percent of energy delivered to customers during peak load 

hours must be derived from clean energy sources.  Targeting peak load is significant, the theory 

goes, becaues it tends to be met using dirtier and more expensive generation.  Thus, proponents of 

the CPS argue that the simple MWh-based approach used by RPS might be less beneficial than one 

that is more coincident with these high-load periods.2  Proponents argue that a CPS could 

encourage peak focused renewables buildout which could lessen carbon and/or criteria pollutant 

emissions during peak hours, lessen the need for fast-ramping ancillary services, and lessen 

transmission and distribution costs.3,4  Advocates differ as to whether a CPS should target the peak 

hours of the year (e.g. the top 10% of the year) or the top hours of the day (e.g. 2-6 PM).  While a CPS 

is a different planning constraint than an RPS, a single resource could simultaneously contribute to 

both requirements.   In effect, the CPS creates additional preference for generation that occurs 

during high-load periods and for energy storage. In August 2018, Massachusetts signed the nation’s 

first CPS into law.5   

While Massachusetts has already developed robust climate policy including binding 

greenhouse gases (“GHG”) reduction targets, an RPS, solar mandates, and the nation’s first large-

scale off-shore wind procurement, the state argued that a CPS could nevertheless reduce ratepayer 

costs and lower greenhouse gas emissions.6  The proposal targets high-demand hours on each 

work-day, with additional preference for generating during the summer and winter seasons.  Wind, 
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solar, and other RPS-eligible resources are eligible to participate in the CPS.  Energy storage, either 

paired with renewables or “virtually” charged from renewables, would also qualify.7 

Despite the growing interest in CPS, many of the program’s fundamental assumptions 

remain completely untested.  Quantitative and qualitative analysis remains scarce.  So far as the 

author can tell, there are only three prospective analyses of CPS in the literature.  An analysis 

focusing on California suggests that CPS are a feasible method to reduce carbon emissions but that 

the policy may not be cost effective.8  The Massachusetts Department of Energy Resources 

(“DOER”) commissioned an analysis on its proposed regulations which indicates that the CPS will 

offer net ratepayer benefits of $710 million and 563,359 metric tons of carbon reduction over 10 

years.9  The Massachusetts analysis provides top-line numbers only, and was opaque as to how the 

identified price and emission benefits were achieved.  Finally, a prospective study of the 

Massachusetts draft CPS regulations focusing on storage operation, shows that the policy is “largely 

ineffective” at achieving emissions reduction goals, and that other climate policies such as carbon 

taxes are better suited to this task.10 

While Clean Peak Standards have been subject to only limited analysis there are, however, 

robust literatures focusing on various intended objectives of CPS including pathways for deep 

decarbonization11,12, using storage to enable more cost effective renewables buildouts13, methods 

for mitigating the duck curve14, and benefits of reducing peak demands.15,16,17  To the extent that a 

CPS can internalize some of these benefits, then it could prove to be a useful policy tool.  But, there 

is no a priori reason to assume from the literature that the CPS can provide the salve it claims, or to 

suggest that it will be cost-effective policy. 

Given that one state has adopted a CPS and several others are considering them, it is worth 

understanding how CPS interact with other state climate policies and whether CPS meet their 

objectives.  Moreover, it is important to assess whether CPS are a cost-effective way to meet climate 

goals, relative to other policies, such as an accelerated RPS or a carbon tax. 

In this analysis, we develop a combined economic dispatch and capacity expansion model, 

simulating the New England grid, which efficiently schedules existing power plants and builds new 

renewable or storage assets to comply with CPS and RPS requirements.  We investigate the 

equilibrium build-out of wind, solar, and storage resources required to meet various CPS and RPS 

requirements (ranging from 0% to 50%) and then assess the impact of these policies on system 

efficiency (i.e. total cost of production), GHG emissions, and costs.  We focus on the ISO New 

England (“ISO-NE”) grid because it is the first market that will be affected by a CPS and because 
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there are plans to add a substantial amount of wind, solar, and storage to the system in the years to 

come.18 Note that the model does not report when a new CPS-eligible resource would be built, only 

that it would be built as part of an optimal system.   

The purpose of this analysis is to provide directional results on the effects of adding CPS to 

existing climate policy and to explore how CPS interact with wholesale markets. Our results should 

be treated as indicative rather than definitive.  We are not attempting to offer specific predictions of 

costs or benefits, and this analysis should not be treated as a forecast of renewables development in 

the region or of future market prices.  Further, we are not attempting to model any specific CPS 

proposal in detail.   

For a speculative analysis of this sort, it is critical to note that the analysis is reliant on a 

number of assumptions, most notably overnight capital costs of various compliance technologies, 

storage operation, and a simplified thermal supply stack.  The model may not capture all CPS-

related value or all CPS compliance strategies.  For example, the model omits certain costs and 

benefits such as transmission or distribution upgrades require to integrate renewables, or the value 

of avoiding these upgrades through strategic placement of new resources.  Separately, the model 

makes no distinction between behind-the-meter (“BTM”) or utility-scale resources.  From an energy 

standpoint, there is no difference between solar directly serving a residential customer and utility 

solar flowing to that same home (the model does not capture T&D losses).  There may be important 

distinctions, however, in pricing regimes that could affect new resource decisions.  On the 

wholesale side, for example, capacity markets have biases that encourage the development of some 

kinds of resources rather than others because of the way these markets are structured.19 On the 

retail side, distributed and behind-the-meter resources are often subject to flat or time-of-use 

energy tariffs which provide less granular and less precise price signals than those found in the 

wholesale market, which makes it less likely that these BTM resources will accurately internalize 

and respond to system needs in real-time. In general, however, we think that it is unlikely that 

adding BTM resources will reduce the total cost of operating the system in a market context.ii  

 
ii The addition behind-the-meter policy resources will change the allocation of costs between energy, 
capacity, and subsidies but should not affect total costs.  First, assume that all resources are in front of the 
meter, then the cost of the capacity market is 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑃𝑃 × 𝑄𝑄, where 𝑃𝑃 is the clearing price of 
the market and 𝑄𝑄 is the quantity of capacity required.  Now, let’s shift a fraction of that quantity, ∆𝑄𝑄, behind-
the-meter.  So long as the behind-the-meter supply is not marginal then, in equilibrium, the peak contribution 
of ∆𝑄𝑄 should shift both the supply curve and the demand curve to the left by ∆𝑄𝑄.  Because change in supply 
equals change in demand, the change in price, ∆𝑃𝑃, is zero.  In effect, consumers avoid paying the inframarginal 
capacity rents to ∆𝑄𝑄.  Overall capacity costs are now:  
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2. Methods 

2.1 Optimization Model 

Our model integrates elements of an hourly production cost model (“PCM”) and of a capacity 

expansion model (“CEM”) into a single-level linear program.  Specifically, the model function seeks 

to minimize the combined costs of (a) new resources required to satisfy RPS and CPS requirements, 

(b) the system’s annualized cost of producing energy, and (c) the carbon costs (nil by default).  The 

model simulates a single bus system without transmission constraints.   

The CEM portion of the model endogenously selects the least-cost portfolio of existing 

thermal generators, on-shore wind, off-shore wind (“OSW”), solar, and storage resources needed to 

satisfy load as well as exogenous RPS and CPS requirements.  Each model run starts from a blank-

slate of resources.  Existing resources which are not built within a model are implicitly “retired.”  

The model does not include a full representation of the wholesale capacity market.  Unlike the ISO 

New England (“ISO-NE”) Forward Capacity Market (“FCM”), the model only accounts for the cost of 

procuring sufficient generation capacity – and not the rents associated with being an inframarginal 

capacity resource.  This formulation still captures the ability of new renewables or storage 

obviating the need for expensive “peaking” resources that run infrequently.  

The PCM component of our model develops efficient hourly schedules for a set of power 

plants to meet load while minimizing the system’s operating costs (i.e., total cost of production – 

“TCP”). It returns operational schedules for each resource on the system as well as the cost to run 

the system and the price paid by load for electricity.  If we set a price on carbon emissions, these 

costs also affect the total system costs and generator dispatch.  Within the PCM, storage is 

dispatched to both maximize energy revenues and help comply with the CPS.  When storage is used 

to meet the CPS, we require it to be charged by clean resources: solar, wind, and offshore wind (as 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐵𝐵𝐵𝐵𝐵𝐵 = [(𝑃𝑃 − ∆𝑃𝑃) × (𝑄𝑄 − ∆𝑄𝑄)] + [∆𝑄𝑄 × 𝐶𝐶] 

With the first bracketed term reflecting the capacity market costs and the second reflecting the capacity cost 
of the behind-the-meter resources.  If the fixed costs of ∆𝑄𝑄 are less than the capacity market clearing price, 
then overall costs are reduced. But, this does not capture the full story for resources supported for policy 
reasons – the BTM resources at issue.  These resources require net payments such that: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

To the extent that a new behind-the-meter policy resource is not paid infra-marginal rents from the capacity 
market, the amount of subsidy must be increased dollar-for-dollar.  So, in a giant game of whack-a-mole, 
society pays less in capacity costs but more in subsidies, leading to no change in the total costs.  Taking money 
from your left pocket and putting it into your right pocket doesn’t make you any richer. 
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modeled, storage charging demand cannot exceed instantaneous renewable output). When storage 

is used for energy arbitrage, it is indifferent to energy source.  Storage operation also affects market 

prices.  While storage does not directly set the market’s price, its operation affects the dispatch of 

other resources and, consequently, market prices set by resources with non-zero SRMCs.iii  The 

PCM also includes ramp rates for thermal units to capture duck-curve related inefficiencies but 

omits all other operational or intertemporal constraints.iv      

Our model was formulated specifically for this analysis.  (A complete formulation of the 

linear program is provided in Supplementary Information §1) . The linear program was developed 

using Python 2.7 and the Pyomo optimization programming library.20 It was solved using the GNU 

Linear Programming Kit (GLPK).21  

2.2 Parameterization 

Our analysis compares the same basic system subject to various exogenous conditions.  We run the 

model over 13 weeks of hourly data which, in aggregate, are representative of patterns in electricity 

demand, natural gas prices, and wind and solar output in the New England over 2017 and 2018 (for 

details, see Supplementary Information §3).   We do not modify the underlying load data because 

ISO-NE forecasts little change in peak demand and annual energy consumption out through 2028 

(the last year forecasted).22  ISO-NE forecasts that summer peak demand, net of energy efficiency, 

will decline by 2.2% over the next decade, while energy demand will increase by 0.8%.  Hourly 

generation profiles for on-shore wind, solar, and imports are also developed using ISO-NE market 

data23  and matched with the load data.24 The off-shore wind profile is developed using historic 

meteorological data from the MassCEC25, paired with a GE Halide 150-6 wind-turbine power curve 

– the same kind of turbine used in the nation’s first off-shore wind farm.26    

We approximate ISO-NE’s existing thermal supply stack using 17 composite units, for 

reasons of computation tractability. (For details, see Supplementary Information §3.)  These 

composite units are generated using a k-means clustering algorithm and unit-specific data on fixed 

costs, variable O&M, and heat-rate from S&P Market Intelligence.27  The supply stack includes 

nuclear, gas and oil units but omits cogeneration facilities, biomass, and coal units.  Nuclear units 

are steam turbines, while the oil and gas units are a mixture of combined cycles, combustion 

turbines, and steam turbines.  The model can build new gas combined cycles and combustion 

 
iii Storage operation can also be thought of as a price-responsive demand-side resource dynamically shifting 
loads to minimize costs. 
iv E.g., minimum up-time requirements, minimum down-time requirements, minimum generation thresholds. 
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turbines, but these resources are never selected in practice.  A summary of thermal resources is 

provided in Table 1 and full treatment is provided in the Supplementary Information.   

Table 1: Summary of Existing Thermal Resources 

Fuel Technology Number 
of Units 

Total 
MW 

Average Going 
Forward Cost 

($/kW-Yr) 

Average 
Heat Rate 

(Btu/kWh) 

Average Non-
Fuel Variable 

O&M ($/MWh) 

Natural Gas 
Combined Cycle 6 12,777 16.79 8,324 3.94 
Combustion Turbine 2 906 4.4 11,007 15.38 
Steam Turbine 2 1,294 13.76 16,682 31.16 

Petroleum 
(DFO) 

Combined Cycle 2 390 19.44 10,311 47.92 
Combustion Turbine 2 180 5.79 15,040 117.92 
Steam Turbine 2 3,339 5.66 11,699 53.32 

Uranium Steam Turbine 1 3,336 111.01 10,400 5.3 
 

The model can also build solar, wind, off-shore wind (“OSW”), and energy storage systems (“ESS”).  

These resources can be used for RPS and CPS compliance.  Forward-looking costs for these 

resources is sourced from the 2019 NREL Annual Technology Baseline for the year 2025.28  Table 2 

depicts key data about each technology type and highlights tradeoffs between different resources.  

On an annualized basis, solar is less expensive to build than wind, but has a significantly lower 

capacity factor.  OSW is more expensive than terrestrial, but has a higher annual output and higher 

capacity potential.   

Table 2:  Parameters for New Builds 

Type 
Offer 

($/MWh) 

Annualized Cost 
of New Builds 

($/kW) 
Capacity (MW) Max. 

Capacity 
Factor (%) 

All 2025 Initial Max 

Solar 0 215 1,100 Inf. 16% 

Wind 1 593 1,400 9,000 36% 
OSW 2 215 1600 155 55% 

Hydro 15 445 3,000 3000 75% 

Storage -- 127 0 Inf. N/A 

Notes: Cost data from the 2019 NREL Annual Technology Baseline.  Capacity Factors based on ISO-NE (Wind, 
Solar) and Massachusetts CEC (OSW) generation output profiles.  We rely on C&I solar cost estimate – a middle 
ground between lower-cost utility-scale solar and higher-cost residential solar. Offers are low but non-zero for 
wind and OSW to enable economic curtailment during periods of overgeneration. Overnight costs are annualized 
assuming a 10% discount rate and a 30-year lifespan. The model will tend to build as much wind as possible, so 
we add a cap at 9,000 MW – which was ISO-NE’s assessment of the full set of “best onshore” resource; or a 
doubling of all proposed on-shore wind in New England 29,30 OSW has a maximum capacity of 155 GW, well 
above buildout required in this model.31 Solar and storage can be built in any quantity.   

Storage is modeled as single homogenous product having 85% round-trip efficiency and a four-

hour duration, in line with current estimates of lithium-ion battery technology.32   
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2.3 Experimental Design 

The experiments in this study explore how changes to CPS and RPS requirements affect overall 

costs, hourly production costs, and carbon emissions.  For each run, we rely on the same underlying 

single-zone system, with RPS ranging from 0% to 50% of annual energy and CPS ranging from 0% 

to 50% of peak period energy.  RPS and CPS are assessed in 5% increments.   

For a given CPS and RPS requirement level, we also assess the impact of CPS formulation. 

We test two different possible CPS types: a peak hours of the day formulation (daily CPS) and a peak 

hours of the year formulation (annual CPS).  In the former, we set predefined compliance windows 

for the four hours in each season when the system tends to peak, based on the input load data.  In 

the latter, we use the top 10% of the year with the highest system load as our set of compliance 

hours (876 hours per year; 218 hours in our 13-week sample).  In both cases, we assume that 

market participants know the set of CPS hours with certainty. The two CPS variations are not 

directly comparable due to the difference in compliance hour specification, but do provide 

complementary views into Clean Peak Standards.  In each of the central cases we assess 94 discrete 

combinations of RPS, CPS, and CPS type.   

As a final reminder, we are modeling a hypothetical CPS and a hypothetical RPS for the New 

England system, and it does not actually match any existing RPS (or portfolio of state RPS) in effect 

today.  Nevertheless, it is representative of RPS and CPS generally.  Note also, that the model 

reflects how new resources are built and operated in an end-state, but not the year-over-year 

progression of capacity expansion required to get to that end.  It is certainly possible that higher 

CPS or RPS requirements may lead to non-monotonic changes in capacity across the various 

resource types.   

3 Results for Central Case 

3.1 Ability of CPS or RPS to affect outcomes 

Although we run scenarios based on a 5% by 5% grid of nominal CPS/RPS combinations, we find 

that one policy or the other is non-binding in many instances.  By non-binding, we mean that one-

policy or the other does not change behavior or affect optimal capacity expansion.  This is for two 

different, but related, reasons.   

When a CPS requirement is “too low” for a given statutory RPS level, the CPS doesn’t matter 

because the resources built to satisfy the RPS also generate electricity during the peak periods 
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when the CPS is in effect.  For example, if the RPS requires that 35% of annual energy comes from 

renewable resources, it is unlikely that none of this will occur during the peak hours. Indeed, we 

find that for that 35% RPS will also lead to 20% to 25% of peak period energy will be sourced from 

renewables – without any formal CPS requirement at all.   

Similarly, when a CPS requirement is “too high” for a given statutory RPS level, we observe 

higher effective RPS than may be nominally required.  As peak hours are a subset of all hours, so 

resources tailored to generate during the former will also happen to generate during the latter by 

definition.  For example, a 50% CPS paired with a zero percent RPS requirement will nevertheless 

induce a positive effective RPS.  The level of effective RPS is a function of the resources developed to 

comply with the CPS: more renewables will spur a higher effective RPS while more storage will 

induce a lower.   

For the remainder we report results based on effective CPS and effective RPS, rather than 

nominal.  The set of unique scenarios that have different effective CPS and effective RPS 

requirements is our feasible region – the domain over which CPS and RPS policies both matter. 

Figure 1 depicts the set of feasible RPS/CPS policy requirements.  The empty area in the lower-right 

of each subplot reflects the area where CPS requirements are “too high” leading to effective RPS 

outcomes in excess of nominal requirements.  Similarly, the empty area in the upper-left reflects the 

area where the CPS requirements are “too low”, leading to effective CPS outcomes in excess of the 

nominal requirements.   

Figure 1: Central Case Scenarios  
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Note in Figure 1 that high annual CPS tends to induce higher effective RPS rates than those 

observed under a high daily CPS. This suggests that the compliance strategies used to meet the two 

CPS formulations are different – with the annual CPS building more renewable generation.  In this 

regard, a high annual CPS requirement approximates higher RPS requirement.   

3.2 Effect of CPS on Resource Mix 

Adding a CPS or RPS requirement changes what resources are built on the system.  Figure 2 

depicts how capacity (MW) and energy (GWh) change in response to an increasing RPS.  Increasing 

the RPS, absent a CPS, will primarily spur the development of wind and solar assets.  The system 

builds additional onshore wind up to its 9 GW exogenous cap, then starts building incremental OSW 

and solar assets.  OSW is more expensive than solar but generates more energy on an annual basis.  

As the RPS increases past 25% of annual energy, the system also increases storage from nil to 1.6 

GW. These storage deployments are economic: increased renewable generation leads to price 

differentials which are sufficient to encourage the build out of storage to store surplus generation 

and shift it to higher-priced periods.  This storage deployment also reduces curtailment of 

renewable generation by storing surplus generation and using it to serve load at a later period.  As 

the RPS grows, the share of fossil fuel generation falls – squeezed by near-invariant output from 

nuclear and hydro on one hand, and by increasing amounts of renewables on the other.  

Adding a CPS changes how the system is developed, separate from underlying capacity 

additions required to comply with Renewable Portfolio Standards, Different CPS formulations lead 

to radically different compliance strategies: a daily CPS formulation leads to a resource-shifting 

compliance strategy while an annual CPS formulation leads to a new generation compliance 

technique.  In the former case, the system almost exclusively builds new energy storage.  In the 

latter, a mixture of renewables and storage is developed.  

Figure 3 explores how adding a daily CPS affects the optimal resource mix, holding the RPS 

constant at 20% of annual energy – in effect, this is a horizontal transect through the points on 

Figure 1. The figure allows us to compare how buildout changes as the effective CPS rises (e.g. RPS 

= 20%; CPS = 20% vs. RPS = 20%; CPS = 50%).  Note that the left most bar on Figure 3 plots is 

equivalent to the 20% RPS bar in Figure 2.  (This left-most bar is labeled as having a 17% effective 

CPS because the 20% RPS generates this amount of clean energy during peak periods.)  We selected 

the 20% RPS transect to most clearly depict the effect of adding or increasing CPS.  Other transects 

at other RPS levels show similar trends – indicating that the presented results are indicative of 

broader trends. 
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Figure 2: Capacity (MW) and Energy (GWh) by RPS – No CPS 

  
Figure 3: Capacity (MW) and Energy (GWh) by Effective Daily CPS – 20% RPS Transect 

  
Figure 4: Capacity (MW) and Energy (GWh) by Effective Annual CPS – 45% RPS Transect 

  
For a constant 20% RPS, Figure 3 indicates that increasing the CPS will increase the amount 

of energy storage on the system.  When the nominal CPS is zero, the optimal resource mix includes 

no storage.  But, when the CPS rises to 30% the system builds 2.2 GW of storage, and 6 GW when 

the CPS rises to 50%.  The daily CPS formulation is particularly conducive for building storage.  

With 365 opportunities a year to cycle, even relatively small amounts of energy storage can shift 

enough energy to comply with CPS requirements.  The same trends exist at other transects.   
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On an energy basis, increasing the CPS decreases the amount of petroleum burned.  When 

the required CPS is nil, the system generates about 0.15% of energy from distillate fuel oil (“DFO”) 

but when the CPS rises to 50%, DFO production falls by a third to 0.1%.  The amount of energy 

produced from natural gas rises slightly.  Note that the energy subplots reflect primary energy and 

does not include storage dispatch.   

Figure 4 shows that implementing an annual CPS spurs the development of new renewables 

and storage.  As the peak hours of the year are grouped into a smaller number of days, meeting the 

annual CPS with storage would require significantly more storage capacity than needed for a daily 

CPS.  Instead of moving a modest amount of renewable energy to peak periods each day, it would 

need to move a large amount of energy on a relatively small number of days.  This sort of storage-

only compliance approach is less efficient, however, than building a significant amount of new 

renewable resources and a smaller amount of energy storage.  Compared to the RPS-only resource 

mixes, an annual CPS spurs more new resource capacity overall, with relatively more solar and 

storage but no new OSW.  As the effective CPS increases from 40% to 50%, the amount of solar 

increases from 8 GW of solar to 12.6 GW while the amount of OSW falls from 4.9 GW to 3.2.  The 

bias towards solar and away from OSW is due to solar generation’s higher coincidence with peak 

demand hours.  The new renewable generation built to meet the annual CPS also generates 

electricity in other periods – increasing the effective RPS.  This is why the feasible region for the 

annual CPS in Figure 1 is so thin – the least cost method of complying with the CPS is approximately 

the same as simply having higher RPS.   

3.3 Effect of CPS on System Dispatch 

CPS succeeds at changing how the system is dispatched.  It increases the amount of clean energy 

used during peak periods and reduces reliance on more costly and polluting fossil power plants.  In 

the figures to follow, we present hourly generation for the week with highest peak demand.  Each 

scenario has the same 45% RPS, but different CPS requirements.  Figure 5 depicts a 45% RPS and 

no CPS, Figure 6 a 45% RPS paired with a 50% daily CPS, and Figure 7 a 45% RPS paired with a 

50% annual CPS.  While these scenarios are extreme, they clearly demonstrate how the system 

responds to the adoption of CPS requirements.  
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Figure 5: Weekly Dispatch under 45% RPS and No CPS 

 

Figure 6: Weekly Dispatch under a 45% RPS and a 50% Daily CPS 

 

Figure 7: Weekly Dispatch under a 45% RPS and a 50% Annual CPS 
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In the RPS-only scenario, Figure 5, we observe significant reliance on solar, wind, and off-

shore wind resources.  Energy storage is discharged during a small number of peak hours when 

lower efficiency gas combustion turbines are on the margin.  Storage charges in the low-demand 

periods (where supply exceeds the black net demand line). On two nights, we observe that 

renewables, hydro, and nuclear generation serves all of demand for several hours.   

Adding a 50% daily CPS to the system, as depicted in Figure 6,leads to a significant reliance 

on energy storage but only modest effects to the underlying renewable resources.  We observe daily 

cycling of the battery charging in overnight and morning hours and discharging during the 

afternoon clean-peak periods (Hours 15, 16, 17, 19).  Here, the CPS reduces fossil generation during 

peak periods by increasing reliance on energy storage. It does not completely obviate the need for 

the lower efficiency natural gas combustion turbines (“NGCTs”) during peak hours, however. As 

before, storage charging tends to occur during the low-load overnight period.   While harder to see, 

note too that even though the storage itself is charging from clean resources, the system as a whole 

must generate more total energy due to storage losses, and that incremental energy generally 

comes from fossil fuels.   

Adding a 50% annual CPS, as depicted in Figure 7, leads to newfound reliance on solar.  

Compared to the wind-heavy systems in the prior figures, solar generates more energy during peak 

load hours and better aligns with annual CPS needs.  Storage is used to reduce fossil generation 

during high-load evening hours. That storage charges from surplus early-morning solar or 

overnight wind.  Note that on some days, the storage is mostly charged from solar that would 

otherwise be curtailed, but on other days fossil units are more heavily used.   

3.4 Energy Revenues by Resource Type 

The preceding sections demonstrate that adding a CPS to the market changes what resources are 

built and how they are operated.  Unsurprisingly, this affects energy market revenues for CPS and 

RPS compliance technologies.  We find that solar, wind, and OSW recover between 15% an 60% of 

their fixed costs through the energy market.   For both kinds of wind resources, revenues decline as 

the RPS rises – due to the insertion of zero-marginal cost resources suppressing market prices.  For 

a given RPS, however, revenues are largely unchanged as the CPS increases.  By contrast, an 

increasing CPS requirement generally erodes the value proposition of solar resources.  As the CPS 

increases, more energy is delivered to peak periods from renewables and storage – lessening the 

need for expensive peaking units which, in turn, reduces daytime energy prices and solar revenues.   
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 Unlike the renewable generators, storage quickly erodes its value proposition.  When storage 

is first added to the system, it can recover 7-17% of its costs through the energy market.  As CPS 

requirements increase – and as more storage is added to meet the CPS – storage revenues fall towards 

zero.  Worryingly, at very high CPS levels, storage operates at a loss in the energy market.  In many 

high CPS scenarios, we find that the least-cost compliance CPS strategy is to build batteries, co-

optimize their dispatch for CPS compliance and energy profit maximization, run them at a loss in the 

energy market, and then (implicitly) make them whole through side payments (e.g. Clean Peak 

Credits or cash subsidies from the State). 

While these side payments are not formally calculated in the model, it suggests that meeting 

the CPS – in some cases – would require subsidy payments in excess of 100% of the annualized capital 

costs of the storage asset.  This counterproductive storage dispatch does not manifest itself in the 

RPS-only markets: while storage may not be particularly profitable in RPS-only markets, storage will 

never run at a loss. 

3.5 Effect of CPS on System Emissions, Market Efficiency, and Costs 

Adding a CPS to power markets changes how the power system is built and operated.  In this 

section, we focus on four base system metrics and two composite metrics: 

• Carbon Emissions: The total quantity of power system CO2 emissions (megatonnes/year) 

• Cost of Production: The cost of running the power-system on an hour-to-hour basis; a 

metric of system efficiency ($ billion/year) 

• Fixed Cost of Capacity: The fixed costs power-plants used to generate electricity in the 

region ($ billion/year) 

• Marginal Price of Energy: The load-weighted marginal price of energy, which we set equal 

to system’s highest offer price in a given hour ($/MWh) 

• Total System Cost: the sum of fixed and hourly production costs, which reflects system costs 

in a rate-regulated jurisdiction ($ billion/year). 

• Total Market Cost: the sum of fixed capacity costs and the price of the energy market 

(marginal price of electricity times total MWh sold).   This metric approximates the price of 

wholesale markets in competitive regions, like ISO-NE ($ billion/year) 

Figure 8 (and following) plot how increasing CPS requirements affect each of these metrics.  Each 

figure is composed of a set of RPS isoquants and depicts how CPS affects a metric, while holding the 

RPS constant (e.g RPS = 20% or RPS = 40%).  Each curve can be thought of as a distinct horizontal 
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transect of runs depicted in Figure 1.  Variations on these figures, showing percentage effects of 

adding the CPS, relative to an RPS-only baseline, compared to the RPS only, are provided in 

Supplementary Information §4 (These variations offer finer detail on the “shape” of each iso-quant 

curve.) 

Figure 8 depicts how system emissions vary by CPS, for a constant RPS.  First, observe that 

as we jump between RPS isoquants, the amount of system emissions changes materially – a 5% 

increase in RPS reduces emissions by about 2 megatonnes per year.  Second, we can observe that 

increasing the CPS – for a given RPS level– also changes emissions. (This can be seen by following 

each isoquant curve from left to right.)  For a given RPS requirement, adding a daily CPS will 

consistently increase system emissions – albeit by a small but meaningful amount.  For example, 

adding a 50% daily CPS to a 20% RPS will yield an increase in system carbon emissions of 2.4% 

(17.75 megatonnes with no CPS; 18.17 megatonnes with the 50% CPS).  Annual CPS are less 

consistent in their emissions impact: when paired with an RPS less than 35% the CPS will slightly 

increase emissions, but at higher RPS levels, the CPS reduce emissions.  With both CPS 

specifications, the change in system emissions small.   

 Figure 9, depicting total cost of production, suggests that the daily CPS has no effect on 

market efficacy.  While total cost of production (“TCP”) – our metric of system efficiency – changes 

with RPS (indicating the introduction of new zero-marginal cost renewables resources reducing 

system fuel costs), it is practically invariant with CPS.  This suggests that the CPS does not reduce 

ramping constraints.  Slight reductions in TCP associated with high annual CPS suggest that solar 

energy – coincident with periods of peak demand – are limiting the use of expensive Peaker units 

and reducing short-run costs (cf. Figure 6 and Figure 7). 

 Figure 10 shows that both CPS specifications consistently reduce the marginal price of 

electricity.  For example, in a market with a 30% RPS – increasing the daily CPS from 20% to 50% 

decreases prices from $34.95/MWh to $33.62/MWh (an 4% reduction).  This suggests that the CPS 

does affect how the power system is operated on the margin – as implied by Figure 6 and Figure 7.  

Solar and storage, in particular, are able to reduce the use of expensive fossil-fuel peaking resources 

which, in turn, reduces prices.  Reduced energy prices benefit consumers.   
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Figure 8: Total CO2 Emissions by RPS (megatonnes / year) 

 
Figure 9: Total Cost of Production by RPS ($bn / year) 

 
Figure 10: Marginal Price of Electricity by RPS ($/MWh) 
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Figure 11: Total Fixed Costs ($bn / year) 

 
Figure 12: Total System Cost ($bn / year) 

 
Figure 13: Total Market Cost ($bn / year) 
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Figure 11 depicts the fixed costs of capacity.  Here, we observe that as the RPS increases, so 

do prices. For example, the cost of a market with a 35% RPS and no CPS is $7.2bn.  The same 

market with a 40% RPS, however costs $8bn.  This reflects the fact that renewables are expensive, 

compared to the cost of already installed capacity (with modest going-forward costs). Increasing 

the CPS – for a given RPS – increases costs still more.  For example, the $7.2bn market cost 

associated with a 35% RPS increases to $7.6bn as the effective annual CPS rises from 22% to 30%.  

If a daily CPS were implemented, then the market cost would rise from $7.2bn to $7.3bn 

(CPS=35%), to $7.6bn (CPS = 50%).  Under both CPS specifications, the higher the CPS, the faster 

the increase in costs.  Increasing the CPS from 30% to 35% increases costs by $40 million, while 

increasing the CPS from 45% to 50% increases costs by $120 million.  

The total cost of the running the system depends on whether the power system is rate-

regulated or subject to market prices.  In the former, the system’s cost is the sum of production and 

fixed costs.  Under rate regulation, adding a CPS consistently increases costs – irrespective of CPS 

specification or RPS requirement.  These escalating costs are depicted in Figure 12. 

Under cost- or price-based system, these results indicate that a “too high” CPS requirement 

can lead to inefficient deployment of capital.  For a given RPS requirement, with a generically high 

CPS requirement, there is almost always a lower CPS option that provides the same benefits at 

lower cost, or a higher RPS/ lower CPS option that provides more benefits for the same cost.  We 

can attribute the increase in total costs to the adoption of more expensive renewable resources (e.g. 

solar instead of wind) and of storage which is not cost-effective, but-for implied CPS incentive 

payments.   

3.6 CPS Benefit Attribution 

Using our simulated results, we now turn to empirically assessing the incremental benefits of 

adding a Clean Peak Standard.  In this section, we formulate a basic linear regression model which 

allows us to suss out the incremental value of CPS.   

In the preceding figures, we observe that as the RPS rises, the minimum effective CPS rises 

too.   This means that our effective CPS contains two different trends – the underlying escalation in 

minimum effective CPS, and the relative increase in CPS from that minimum.  We control for this 

effect by regressing against relative CPS (effective CPS for a given effective RPS, less minimum 

effective CPS).  In effect, this shifts each iso-quant to the left, until each starts at zero. 
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Separately, we observed that increasing the RPS (jumping between RPS iso-quant curves) 

often has a bigger effect than increasing the CPS (moving along a given curve).  As we are primarily 

interested in how CPS affect the system (irrespective of RPS level), we control for RPS-related 

benefits by shifting each curve down until its left-post point is set to zero.  This results in a curve 

which depicts the change in a given metric, relative to the RPS-only starting-point. 

The combination of these two transformations functionally results in us dragging each 

isoquant from the Figure 8 through Figure 13 down and to the left, until the left-most point of each 

curve is at the origin (0,0). Supplementary Information §4 presents transformations of Figure 8 

through Figure 13, which control for these factors.  Thus, our regression model is of the following 

form: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  0 + 𝛽𝛽1(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶) 

We present results for four system metrics for both CPS formulations in Table 3.  The same process 

is used to assess impact of expanding the RPS, all else equal.   

Table 3: Impact of CPS & RPS on Market Outputs 

Metric 
CO2 Emissions 

  

Operating Cost / 
Mkt Efficiency   

Energy Mkt Price   Fixed Cost 
  

Total Market 
Costs 

(kilotonnes/year) ($mm/year) ($/MWh)  ($mm/year) ($mm/year) 

CPS Type Annual Daily   Annual Daily   Annual Daily   Annual Daily   Annual Daily 

Results for a 1% Change in CPS 
R2 0.791 0.889  0.818 0.559  0.135 0.954  0.927 0.980  -- -- 
Value -31.27 9.92  -1.42 -0.51  -0.03 -0.09  38.22 21.17  34.81 10.47 

Value / $mm -0.898 0.948  -0.041 -0.049  -0.001 -0.009  1.098 2.023    
               
Results for a 1% Change in RPS 

R2 0.929 -0.997  0.971 0.989  0.727 0.974  0.949 0.943  -- -- 
Value -328.6 -453.1  -26.30 -41.80  -0.22 -0.35  115.60 92.82  88.74 50.45 

Value / $mm -3.703 -8.982  -0.296 -0.829  -0.003 -0.007  1.303 1.840                   
CPS / RPS  Ratio 24% -11%   14% 6%   32% 122%   84% 110%       

Notes: 
• Value / $mm reflects the change in a parameter per change in Energy + Fixed Costs.  It is a metric of relative value. 
• CPS / RPS Ratio reflects the relative value of spending $1 on an expanded CPS compared to spending that on RPS. 
• All Parameters are significant at P<0.05 level. 

 

Considering emissions first: a 1% increase in annual CPS requirement leads to a 31 kilotonne 

decrease in annual system emissions – all else equal – while a 1% increase in daily CPS increases 

carbon emissions by 9 kilotonnes.  Turning to system efficiency, we find that increasing a daily CPS 
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by 1% leads to reductions in operating costs of $0.51 million/year, while a 1% increase in annual 

CPS leads to a reduction in costs of $1.42 million/year.  As operating costs range from $1.1 to $2.4 

billion/year – the efficiency benefits of the CPS are de minimis.  At the same time, however, fixed 

costs increase markedly.  A 1% increase in annual CPS increases fixed costs by $38.22 million/year 

while a daily CPS increases fixed costs by $21.17 million.   

In a market setting, we observe that CPS increases costs by $10-35 million per 1% increase 

in requirements.  Thus, a 20% increase in daily CPS requirements leads to total costs rising by 

about $210 million per year.  Under a rate-regulated setting, the effect is more dramatic, because 

the price-supressive benefits of the CPS are much less unimportant.  Under these circumstances, a 

1% increase in CPS increases costs by $21 to $37 million per year.      

 Increasing an RPS also increases costs but provides more material benefits.  Increasing the 

RPS increases fixed costs because new renewables replace existing fossil resources with more 

modest going forward costs (e.g. are partially depreciated).  At the same time, however, these new 

renewables drive down emissions and operating costs (because of increased reliance on zero-

marginal cost resources).   

Separately, we observe that increasing an RPS by 1% reduces system emissions by 329 to 

453 kilotonnes per year at a net cost of $50 to 89 million.  While increasing the RPS increases fixed 

costs, it also drives down operating costs.  By taking the ratio of emissions rates to cost, we see that 

an additional dollar spent expanding the RPS will reduce system emissions by 5 to 10 times more 

than a dollar spent on an expanded CPS.   

This analysis indicates that the annual CPS offers modest carbon reductions at reasonably 

high cost, while the daily CPS consistently increases both costs and emissions.  Both CPS 

formulations offer less value to the system – and to customers – than simply expanding the RPS.  

4 Sensitivities:  

4.1 Effects of Storage-Focused CPS  

While our analysis indicates that energy storage is already an essential component of technology-

neutral CPS compliance, some policymakers have developed CPS regulations that provide 

preferential treatment for storage resource.  Massachusetts, for example, biases its program 

towards energy storage by derating the value of renewable generation for purposes CPS.  With 

Electronic copy available at: https://ssrn.com/abstract=3560193



22 
 

derating in place, the State expects that storage will meet 59% of CPS compliance requirement – 

compared to just 5% if without the renewables derating.33   

This sensitivity analysis looks at the general effect of derating renewables for CPS 

compliance, and modifies the base model by derating the value of renewable generation by 75% 

when used for CPS compliance (i.e. 1MWh of renewable output during peak hours yields 0.25 MWh 

of CPS compliance). Storage is not derated.   

Derating renewables for CPS compliance increases the share of energy storage on the 

system. Figure 14 is analogous to the capacity portions of Figure 3 and Figure 4, but depicts 

capacity buildout assuming that renewable output is derated by 75% when used for CPS 

compliance. Compared to our central case, we observe that derates lead to an increase storage 

capacity by one-third for a daily CPS and by more than 50% for an annual CPS.  

As before, changing the resource mix changes compliance cost, system operation, and net 

emissions.  Compared to the central case, we find that this storage heavy system costs more than 

the central case, and offers fewer benefits.  Table 4 mimics Table 3.  We observe that total costs rise 

markedly for the annual CPS ($63 million/year per 1% increase in CPS vs. $35 million) and 

modestly for the daily CPS ($12 million per 1% increase in CPS vs. $10 million).   Efficiency benefits, 

already modest in the central case, are further reduced.  Worse, the emissions rise are 40% higher 

for the daily CPS (13.8 kilotonnes per 1% increase in CPS vs. 9.9 kilotonnes); and that emission 

reductions in the annual CPS cases are 72% lower.  Overall, we find that attempts to tilt the CPS in 

favor of storage leads to higher costs and worse emissions outcomes than a technology-neutral CPS.   

Figure 14: Capacity (MW) by Effective CPS (Renewables derated 75% for CPS) 

Daily CPS (20% RPS Transect) 

 

Annual CPS (45% RPS Transect) 
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Table 4: Impact of CPS & RPS on Market Outputs (Renewables derated 75% for CPS) 

Metric 
CO2 Emissions 

  

Operating Cost / 
Mkt Efficiency   

Energy Mkt Price   Fixed Cost 
  

Energy + Fixed 
Costs 

(kilotonnes/year) ($mm/year) ($/MWh)  ($mm/year) ($mm/year) 

CPS Type Annual Daily   Annual Daily   Annual Daily   Annual Daily   Annual Daily 

Results for a 1% Change in CPS 
R2 0.300 0.920  0.112 0.286  0.736 0.955  0.920 0.967  -- -- 
Value -8.91 13.790  -0.570 -0.250  -0.156 -0.091  82.050 23.090  63.306 12.134 

Value / $mm -0.141 1.136  -0.009 -0.021  -0.002 -0.008  1.296 1.903    
               
Results for a 1% Change in RPS 

R2 0.989 0.997  0.970 0.992  0.962 0.979  0.962 0.975  -- -- 
Value -428.0 -446.0  -37.92 -42.19  -0.409 -0.413  100.5 111.7  51.432 62.104 

Value / $mm -8.322 -7.182  -0.737 -0.679  -0.008 -0.007  1.954 1.799    
               
CPS / RPS Ratio 2% -16%  1% 3%  31% 113%  66% 106%       

 

4.2 CPS under Carbon Tax 

Carbon taxes are frequently touted as an efficient method to reduce carbon emissions in the electric 

sector.  Many states, including Massachusetts and California, have incorporated carbon pricing into 

their electricity markets.  In this sensitivity, we explore how CPS would interact to a system that is 

subject to both an RPS and a $50/mton carbon tax – in line with estimates of the social cost of 

carbon.34   

Adding a carbon tax leads to no directional change in our results (cf. Table 5 and Table 3). 

As before, we find that adding a daily CPS will increase emissions, decrease operating costs by a de 

minimis quantity, and materially increase total costs. The annual CPS formulation again fares better 

– modest carbon reductions at high cost.  Under a carbon tax, the RPS will continue to drive 

material reductions in carbon emissions at lower cost than what can be achieved via the CPS. 
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Table 5: Impact of CPS & RPS on Market Outputs ($50/mton Carbon Tax) 

Metric 
CO2 Emissions 

  
Operating Cost / 

Mkt Efficiency   
Energy Mkt Price   Fixed Cost 

  
Energy + Fixed 

Costs 

(kilotonnes/year) ($mm/year) ($/MWh)  ($mm/year) ($mm/year) 

CPS Type Annual Daily   Annual Daily   Annual Daily   Annual Daily   Annual Daily 

Results for a 1% Change in CPS 
R2 0.740 0.557  0.693 0.705  0.493 0.847  0.912 0.931  -- -- 
Value -29.65 9.210  -1.87 -1.02  -0.041 -0.094  40.41 18.30  35.514 7.044 

Value / $mm -0.835 1.307  -0.053 -0.145  -0.001 -0.013  1.138 2.598    
               
Results for a 1% Change in RPS 

R2 0.963 0.997  0.996 0.996  0.899 0.986  0.970 0.979  -- -- 
Value -337.5 -429.6  -25.30 -32.65  -0.330 -0.428  128.43 137.40  88.818 86.016 

Value / $mm -3.800 -4.994  -0.285 -0.380  -0.004 -0.005  1.446 1.597    
               
CPS / RPS Ratio 22% -26%  18% 38%  31% 267%  79% 163%       

 

5 Discussion 

In some instances, we find that CPS are ineffective and expensive; in others, we observe that CPS 

make the grid dirtier and more expensive.  The adoption of a daily CPS consistently increases costs 

to consumers and increases emissions, compared to a system without a CPS.  Adding an annual CPS 

can make the system slighter cleaner at very high cost, by substituting higher-cost solar for wind. 

Neither formulation materially changes system efficiency; both materially increase cost.  Our 

findings do not suggest that CPS will yield better results with time: even as CPS spur peak-aligned 

renewables and the retirement of dirty peaking resources – emissions do not materially improve.   

The underlying problems we identify with CPS exist in both the daily and annual 

formulations. These trends are observed across a wide range of RPS, CPS requirement levels 

indicating that the problem is structural, rather than the result of specific circumstances.   Our 

results align with the results from California and Massachusetts which indicate that an annual CPS 

leads to better outcomes than a daily CPS.35,36  But, after controlling for other factors, we find both 

variations of CPS ineffective.  Compared to an expanded RPS, both CPS formulations offer poor 

value for money: abatement of carbon emissions costs 5 to 10 times more when achieved using CPS 

instead of Renewable Portfolio Standards.  While certainly possible, it seems unlikely that any 

tweaks to CPS will solve the structural problems.   

CPS portrays itself as a technology neutral method to spur the adoption of technologies with 

generation profiles coincident with periods of peak MW demand. In Figure 4, we observe just this: 
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CPS shifts the resource mix away from higher capacity factor wind and towards solar and storage.  

This results in a more balanced, fuel-diverse resource mix.  In this context, CPS acts as de facto 

subsidy for these resources, and the cost of this subsidy can be observed in both Figure 11 and 

Table 3.   

When policymakers offer some sort of side-payment or make-whole arrangement, it should 

be because the market is not capturing all the value society bestows on the underlying product.  For 

RPS, rationales include increasing fuel security, improving cost certainty, and reducing system 

emissions.  In a market without a meaningful carbon price, that lack of emissions is not formally 

compensated in the market, so a side-payment via Renewable Energy Credits (“RECs”) can align 

private and societal interests.   

The problem with the CPS isn’t incentive payments, per se.  The problem is that while a REC 

adequately captures a set of actual – but unpriced – societal interests, Clean Peak Energy Credits do 

not.  The supposed benefits of CPS – reducing costs, reducing emissions, and relieving ramping 

constraints – are mostly priced into our power markets already.   The region already prices carbon 

through the Regional Greenhouse Gas Initiative, renewable attributes through RECs, and the value 

of energy through wholesale prices which vary over time and space.  To the extent that renewables 

create new ramping constraints, these are priced via wholesale market reserves or uplift payments.  

New England does not have a serious problem with renewables integration, with ramping, or with 

excessively high peak-period emissions that could be resolved through the CPS.  Thus, the CPS is 

driving down theoretical problems which do not actually manifest themselves. 

Reducing an inconsequential problem with excess zeal introduces new problems.  As 

observed in Section 3.d, when the CPS is ratcheted up, the least-cost compliance CPS strategy is to 

build batteries, co-optimize their dispatch for CPS compliance and energy profit maximization, run 

them at a loss in the energy market, and then make them whole through side payments.  Table 3 

implies that the CPS can make society worse off because society is offering side-payments to induce 

batteries to operate in a way that society doesn’t actually want, only to end up where we 

started.  This perverse outcome does not occur in the absence of a CPS.   

 To the extent that is the underlying goal of CPS is to provide subsidies to energy storage, 

then our research suggests that that regulators should look elsewhere. While a CPS only offers a 

single value stream for storage (bulk energy time shifting), other incentive programs can target 

specific system needs or simply buy-down the cost of storage in advance of a high-renewables 

future.  Instead of focusing on an attribute-based program, it may be more efficient to simply 
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provide a fixed $/kW subsidy (e.g. California’s Self Generation Incentive Program) or a tax credit to 

reduce capital costs (e.g. the Federal Investment Tax Credit).  These structures would allow storage 

developers to pursue higher value projects and might allow for more storage development per 

incentive dollar spent. 

 If a regulator’s goal for the CPS is to reduce emissions or help with renewables integration, 

then they would be better off simply expanding or accelerating the procurement of renewables via 

an RPS or carbon tax.  These are proven methods to reduce emissions at reasonable cost.37  If a 

region is grappling with specific problems (e.g. limited ramping capability), then more targeted 

programs may be more effective than the CPS’s kitchen-sink approach.   

6 Conclusion 

Regulators and policymakers should be cognizant of the way that new policy measures interact 

with existing tools.  While accretive policymaking can provide incremental value, unexpected and 

undesirable outcomes are possible, especially when substantive due diligence occurs after a policy 

is codified.  While its heart is in the right place, our results indicate that CPS are, at best, inefficient 

and, at worst, counterproductive.     

Our analysis indicates adding a CPS changes the resource mix (more solar and storage) but 

offers few incremental benefits that could not also be achieved at lower cost through an expanded 

RPS.  For a given level of RPS, a daily CPS offers no incremental cost/emissions/efficiency benefits.  

For a given level of RPS, an annual CPS offers emissions benefits, albeit at higher cost than those 

same benefits achieved by expanding the RPS.  

More bluntly, our findings suggest that regulators can achieve the same market and 

environmental outcomes at lower cost if they simply do not implement Clean Peak Standards.  Or, 

for the same level of ratepayer spending, regulators could achieve better outcomes by simply 

accelerating their RPS.  While these results are deeply pessimistic about the value of Clean Peak 

Standards, it is worth reiterating that CPS is nascent policy and that this work is preliminary.  It is 

certainly possible that CPS may work better in other regions or if it is narrowly tailored to a specific 

set of circumstances.  Before regulators propose CPS in new jurisdictions, we encourage them to 

carefully examine their intentions and to thoughtfully assess how the adoption of a CPS will affect 

their region.   
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Expensive, Ineffective, & Occasionally Counterproductive 
Clean Peak Standards Simulation Results for New England.   
B.W.Griffiths1 | 3-24-2020 

1. Model Summary 

1.1. INTRODUCTION 

Our model integrates elements of an hourly economic dispatch model (“EDM”) and of a capacity 

expansion model (“CEM”) into a single linear program.  The economic dispatch component of this model 

efficiency schedules a set of power plants to meet load while minimizing the system’s total cost of 

production.  It returns operational schedules for each resource on the system as well as the cost to run 

the system and the price paid by load for electricity.  Storage is dispatched endogenously to both 

maximize energy revenues and help comply with the Clean Peak Standard (“CPS”).  Importantly, storage 

dispatch affects the dispatch of other resources and, consequently, market prices. The capacity 

expansion portion of the model endogenously builds the least-cost portfolio of resources needed to 

generate electricity to serve demand and to satisfy environmental requirements (e.g RPS or carbon tax).  

The model reflects the system as a single bus and ignores all transmission constraints.   

Because the model integrates both dispatch modeling and capacity expansion, it explicitly 

considers the feedback loops between adding new resources or retiring existing resources, and hourly 

market prices.  For example, as more renewables are built to meet Renewable Portfolio Standard 

(“RPS”) or CPS requirements, energy prices fall and some existing resources exit the market.  There are 

trade-offs between renewables too: as more of one kind of renewable resource is built, its $/MWh 

market revenues will decrease due to price suppression effects which, in turn, might make a different 

kind of resource more cost-effective to build thereafter.   

In the context of capacity expansion, the cost-minimizing framework is equivalent to a profit-

maximizing framework because the new resources being built are price-takers. For the renewable 
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generators this is clearly true, and for storage it is true in as much as its value is dependent on other 

resources in the thermal generating stack.  Note that the model does not include payments for “missing 

money” that might be required to make the new assets profitable, such as capacity or REC payments.  

Incorporating these payments would change overall cost but would not change optimal build or optimal 

dispatch.   

The linear program was developed using Python 2.7 and the Pyomo optimization programming 

library.i It was solved using the GNU Linear Programming Kit (GLPK).ii 

1.2. NOMENCLATURE 

Sets by Resource Type 
VALUE UNITS DESCRIPTION 
T Set Set of timesteps measured in hours 
DISPATCHABLE Set Set of dispatchable generators (e.g. NGCC, nuclear) 
VARIABLE Set Set of variable generators (e.g., solar, wind, offshore wind) 
STORAGE Set Set of storage resources (e.g. batteries, pumped hydro) 
PDR Set Set of price responsive demand and load shedding 
GENS Set Union of Dispatchable, Variable, PDR Sets 
RESOURCES Set Union of Gens and Storage Sets 

 
Variables (Generator Related) 

VALUE UNITS DESCRIPTION 
E MWh Energy in each hour by each resource 
P MW Maximum Power / Nameplate Capacity of each resource 
C $/MWh Short-run Marginal Cost of generating 1 MWh of energy 
CAPEX $/MW-year Annualized Cost of a MW of each resource 
RU, RD % Ramp up / Ramp-down rates (measured as an hourly share of P) 
ER kg/MWh CO2 Emissions Rate for each resource in G 
CF % Capacity Factor of Resource 
PROFILE % Renewable Resource Generation Profile (0-1), for each hour t 
𝜼𝜼 % One-way efficiency of energy storage 
HOURS Hours Number of hours in T 

 

1.3. MODEL FORMULATION 

Objective 
Our model’s objective function seeks to minimize the combined costs of (a) new capacity to satisfy load 

and environmental requirements, (b) the system’s annualized total cost of production, and (c) carbon 

costs.  Equation 1 summarizes this function, while Equations 2-4 define the three cost components.  

Equation 2 calculates the total, annualized capital costs of generating resources.   Equation 3, reflecting 

the total cost of production, calculates the total cost of running the system hour-to-hour. Because 
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capacity costs are annual values ($/MW-year), but we only calculate system dispatch for a subset of 

weeks, we annualize the summed hourly production costs.  Equation 4, mirrored on Equation 3, 

calculates the total cost of carbon emissions (by default, this cost is nil).   
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Capacity Expansion 
In addition to going-forward costs of capacity resources included in Equation 2, each resource class is 

defined by two related terms.  Each resource may be constrained by minimum and/or maximum 

installed capacity (Equations 5-6).  Some resources, such as hydropower, may also be constrained by 

minimum or maximum amount of annual energy production (Equations 7-8). Instead of a MWh metric, 

we impose this constraint using a capacity factors, which reflect the amount of generation as unit 

produces over the year, as a function of capacity (endogenous variable 𝑃𝑃).    
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𝑃𝑃𝑟𝑟 ≤ 𝑃𝑃𝑟𝑟.𝑚𝑚𝑚𝑚𝑚𝑚,∀ 𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 6 
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Economic Dispatch Model 
The EDM portion of our model establishes optimal schedules for each resource on the system while 

ensuring all that generator, system, policy constraints are satisfied.  The EDM represents a single region-

wide market, absent transmission constraints.  The model requires data on system load, wind and solar 

generation profiles, power plant characteristics, fuel prices, and environmental policy.  For all 

generators, we assume that renewable and thermal resources formulate their supply offers based on 
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their short run marginal costs (“SRMC”), where SRMC ($/MWh) equals fuel cost ($/MMBtu) times heat 

rate (MMBtu/MWh) plus variable O&M ($/MWh).2    

The EDM portion of the objective function is subject to seven constraints.  Equation 9 requires 

that demand in each hour must be met by some combination of thermal generation, renewable 

generation, storage, imports, and load shedding.  Equations 10-11 require that output from each 

dispatchable generator, in each hour, ranges from nil to its nameplate capacity.  (N.b., storage resources 

skip the constraint in Equation 10, and can have negative output – i.e., charging.)  Equations 12 and 13, 

when paired, allow for renewable curtailment during low-load periods.  Equation 12 sets generation 

from each variable output resource in each period as less than or equal to its capacity multiplied by its 

output profile (0-1 normalized). Equation 13 limits total renewables output to a value less than or equal 

to storage adjusted demand.  Equations 14 and 15 constrain ramp-rate constraints for dispatchable 

generators which specify that generation in the current period must be within the ramp-up and ramp-

down range of the prior period’s generation.  Ramp rates are defined as a percentage change in 

nameplate-capacity in one hour. 

𝐷𝐷𝑡𝑡 = � 𝐸𝐸𝑟𝑟,𝑡𝑡

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑟𝑟=1

 9 

0 ≤ 𝐸𝐸𝑔𝑔,𝑡𝑡 ,∀ 𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒 10 
𝐸𝐸𝑑𝑑,𝑡𝑡 ≤ 𝑃𝑃𝑑𝑑 ,∀ 𝑑𝑑 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 11 

𝐸𝐸𝑣𝑣,𝑡𝑡 ≤ 𝑃𝑃𝑣𝑣 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣,𝑡𝑡 ,∀ 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 12 

� 𝐸𝐸𝑣𝑣,𝑡𝑡

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝑣𝑣

≤  𝐷𝐷𝑡𝑡 + � �𝐼𝐼𝑠𝑠,𝑡𝑡 × 𝜂𝜂𝑠𝑠,𝑡𝑡�
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑠𝑠

 13 

𝐸𝐸𝑔𝑔 ,𝑡𝑡−1 − �𝑃𝑃𝑔𝑔 × 𝑅𝑅𝑅𝑅𝑔𝑔� ≤ 𝐸𝐸𝑔𝑔,𝑡𝑡 ,∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 14 

𝐸𝐸𝑔𝑔,𝑡𝑡−1 + �𝑃𝑃𝑔𝑔 × 𝑅𝑅𝑅𝑅𝑔𝑔� ≥ 𝐸𝐸𝑔𝑔,𝑡𝑡,∀𝑔𝑔 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 15 

 
Storage Operation & Dispatch 
We model storage as a stand-alone, grid-connected device which can be dispatched to (a) maximize 

energy-market revenues and (b) comply with the Clean Peak Standard.  When used for energy arbitrage 

(“EA”), storage buys electricity from the grid when prices are low and sells to the grid when prices are 

 
2 We rely on historic daily natural gas prices from Algonquin Citygate (the New England reference price for 
interstate pipeline gas) but hold annual fuel prices constant for other technologies (using New England region fuel 
forecasts, for the year 2025, from the 2020 EIA AEO). 
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high. Revenue maximizing storage dispatch is implicit in the model’s objective function and the 

constraints outlined below.  If a storage resource can make money by charging when prices are low and 

discharging when prices are high, it must also reduce the system’s total cost of production. As modeled, 

storage does not have any operating costs per-se, but its charging costs are embedded in the model by 

way of the affected dispatch of other generators, and in turn, changed total cost of production.  From 

the change in production costs, we can calculate ESS operating costs post-hoc.   

Technically, we model the ESS as four discrete elements that are combined into a single storage 

device: a charging device for energy arbitrage, a discharging device for energy arbitrage, a charging 

device for “clean” charging, and a discharging device for the same.  This four-part representation allows 

the ESS capacity to be used for purely economic activity like energy arbitrage, while also ensuring that 

the ESS is charged from clean sources when used for meeting the certain environmental programs. Note 

that as represented here, the Clean Peak Standard can be satisfied using storage charged from clean 

resources, but not storage charged from the general system power. 

 The device subparts are them combined into a single resource, using Equations 16-19.  Equation 

16 states that the system’s overall charge rate in period t, measured in MWh, is the sum of charging for 

energy arbitrage and charging for CPS compliance, while Equation 17 is the discharge equivalent.  

Equation 18 states that the storage device’s overall state of charge, measuring how “full” a battery is at 

a given point in time, equals the state of charge of both sub-functions.  Equations 16-18 are measured at 

the storage device.  Equation 19 calculates the net effect of energy storage on the grid equals loss-

adjusted discharging less loss-adjusted charging, and where 𝜂𝜂 is the one-way efficiency of the storage 

device. 

Storage dispatch is constrained by maximum charge and discharge rates (Eqs 20-21).  In a given 

period, storage can be charged or discharged for one or both functions.  Storage dispatch is also 

constrained by its state-of-charge.  Overall SOC, measured in MWh, ranges from zero to the capacity of 

the ESS (MW) multiplied by its duration (Eq 20).   For both storage subfunctions, SOC in period t must 

equal the SOC in the prior period plus injections less withdrawals (Eq 21).   

𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡

𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 16 

𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑟𝑟𝑔𝑔𝑔𝑔𝑠𝑠,𝑡𝑡

𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 17 

𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡

𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡
𝐶𝐶𝐶𝐶𝐶𝐶,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 18 
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𝐸𝐸𝑠𝑠,𝑡𝑡 = �𝜂𝜂𝑠𝑠,𝑡𝑡 × 𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇� −

𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝜂𝜂𝑠𝑠,𝑡𝑡
,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 19 

0 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑃𝑃𝑠𝑠 ,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 20 

0 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑃𝑃𝑠𝑠 ,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 21 

0 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 20 

𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠,𝑡𝑡−1 + 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡 − 𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡 ,∀ 𝑠𝑠 ∈ 𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 21 

 

1.3 Environmental Mandates 

The model incorporates four different environmental mandates, each of which can be toggled 

separately: 

• Carbon Tax: a $/mton tax on all carbon emissions within the system. 

• Carbon Cap: a maximum amount of emissions from the power system, expressed as the 

system’s average emissions rate (mtons/MWh). 

• Renewable Portfolio Standard (“RPS”) or Clean Energy Standard (“CES”): a share of annual 

generation coming from a specific set of resources.  An RPS specifies that a certain share of 

generation comes from renewables (such as wind and solar), while a CPS specifies that a share 

comes from non-emitting resources, (such as wind, solar, and nuclear).   

• Clean Peak Standard: a CPS requires that a certain percent of energy delivered to customers 

during peak load hours must be derived from clean energy sources.  In effect, the CPS creates 

additional preference for generation that occurs during high-load periods and for energy 

storage. CPS can target either the peak hours of the year (“annual CPS”) or the top hours of the 

day (“daily CPS”).  While a CPS is a different planning constraint than an RPS, a single resource 

could simultaneously contribute to both requirements.    

The carbon tax is computed in Equation 4 and assumes that carbon costs are not internalized in 

generator bids.  Equation 22 requires that total CO2 must be less than or equal to the required CO2 rate 

multiplied by total demand. 

Equation 23 states that output from renewables must equal or exceed the RPS compliance 

quantity, where the compliance quantity is measured as an annual percentage of system load (including 

increased load due to storage operation).   
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Equation 24 is the primary CPS constraint.  It states that output from renewables and clean-

charged storage in peak time-periods (“Peak T”) must equal or exceeding the annual CPS target, which is 

measured as a percentage of annual demand.  Equation 25 specifies that loss-adjusted charging used for 

CPS compliance must be less than or equal to total renewables output in each period.  This constraint 

ensures that storage used to meet the CPS is charged from clean resources.   

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶2 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶2 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × �𝐷𝐷𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 22 

�� � 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.

𝑟𝑟𝑟𝑟𝑟𝑟=1

�
𝑇𝑇

𝑡𝑡=1

≤ 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × ��𝐷𝐷𝑡𝑡 + �𝐸𝐸𝑠𝑠

𝑆𝑆

𝑠𝑠=1

�
𝑇𝑇

𝑡𝑡=1

 23 

� � � 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.

𝑐𝑐𝑐𝑐𝑐𝑐=1

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇

𝑡𝑡=1

≤  𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × � �𝐷𝐷𝑡𝑡 + � 𝐸𝐸𝑠𝑠

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑠𝑠=1

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇

𝑡𝑡=1

 24 

�
𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠,𝑡𝑡

𝐶𝐶𝐶𝐶𝐶𝐶

𝜂𝜂𝑠𝑠,𝑡𝑡

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑠𝑠

≤  � � 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.

𝑐𝑐𝑐𝑐𝑐𝑐=1

� 25 

2 Resource Parameterization 

Thermal Resources 

We approximate ISO-NE’s existing thermal supply stack using 19 composite units, for reasons of 

computation tractability.  These composite units are generated using a k-means clustering algorithm and 

unit-specific data on fixed costs, variable O&M, and heat-rate from S&P Market Intelligence.  The stack 

includes nuclear, gas and oil units but omits cogeneration facilities, biomass, and coal units.  Nuclear 

units are all operate steam turbines, while the oil and gas units are a mixture of combined cycles, 

combustion turbines, and steam turbines.   

For generators, the model includes ramping rates by technology type but no other 

intertemporal constraints. We assume gas and oil steam units have a ramp rate of 15% of their capacity 

in each hour, combined cycles have a ramp rate of 30% of their capacity, and gas turbines / combustion 

turbines can reach 100% of their nameplate capacity within one hour.iii Nuclear units cannot change 

output within a given sample week, but can change output levels between non-sequential sample 

weeks.   

Electronic copy available at: https://ssrn.com/abstract=3560193



8 
 

For all generators, we assume that renewable and thermal resources formulate their supply 

offers based on their short run marginal costs (“SRMC”), where SRMC ($/MWh) equals fuel cost 

($/MMBtu) times heat rate (MMBtu/MWh) plus variable O&M ($/MWh).   We rely on historic daily 

natural gas prices from Algonquin Citygate (the New England reference price for interstate pipeline gas) 

but use EIA AEO 2020 forecasts for uranium and distillate fuel oil (DFO).  

Renewables 
Capital cost data for solar, wind and off-shore wind are sourced from the 2019 NREL Annual Technology 

Baseline.  We annualize NREL’s cost estimates assuming a 10% discount rate and a 30-year resource 

lifespan.iv We assign a very low operating cost for each class of renewables equal to their assumed 

curtailment costs. 

Hourly generation profiles for on-shore wind, solar, and imports are also developed using ISO-

NE market data and matched with the load data. The off-shore wind profile is developed using historic 

meteorological data from the MassCECv, paired with a GE Halide 150-6 wind-turbine power curve – the 

same kind of turbine used in the nation’s first off-shore wind farm.vi   Renewable resources have no 

ramping constraints and are treated as “must-take” unless curtailment is required.     

Local and imported hydro is scheduled economically, up to regions maximum import capacity in 

each period (3 GW), and up to the annual imported energy (75% capacity factor). The annual energy 

metric is based on average historical imports from HydroQuebec and estimates of incremental energy 

from forthcoming hydropower.  For hydro resources, we assume a low SRMC of $15/MWh and a no 

ramping constraints. 

Storage 
Like the renewables, we source storage cost data from the 2019 NREL Annual Technology Baseline and 

annualize costs in the same manner.  Three parameters define the ESS: power (P) measured in MW, the 

storage duration (D) measured in hours, and the one-way efficiency (η). P is endogenously assessed, 

Duration is set to 4-hours, and round-trip efficiency is set at 85%.  We also assume that losses from 

charging and discharging are assumed equal, so η =ηroundtrip
0.5 =0.924. This configuration approximates 

the characteristics of lithium-ion batteries such as Tesla Powerpack. Although there are a variety of 

battery chemistries that could be used for energy storage, lithium-ion remains dominant and accounted 

for more than 94% of all deployed capacity in 2015 and 2016.vii  

 

Data on each resource type is provided in Table 1, below.  
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Table 1:  Resource Parameters 
Unit Parameters Unit Costs Unit Emissions 

Unit Name Fuel Type  
Max Cap 
(MW) 

Heat Rate 
(Btu/kWh) 

Ramp 
Rate 

Fixed O&M 
($/kW-Yr) 

Non-Fuel Variable 
O&M($/MWh) 

Avg. SRMC 
($/MWh) 

CO2 
(kg/MWh) 

SO2 
(kg/MWh) 

NOX 
(kg/MWh) 

Nuc_1 Uranium ST 3,336 10,400 1.3% 111.01 5.30 13.70 0 0 0 

NGCC_1 NG CC 2,812 7,157 33.3% 11.76 1.25 29.81 385 0.003 0.060 

NGCC_2 NG CC 805 6,684 33.3% 14.18 1.03 30.11 359 0.003 0.061 

NGCC_3 NG CC 7,123 7,522 33.3% 11.80 2.35 34.23 404 0.003 0.063 

NGCC_4 NG CC 1,495 7,959 23.6% 14.06 3.61 38.71 428 0.004 0.059 

Coal_1 Coal ST 821 11,745 33.3% 27.50 10.31 40.10 1105 2.401 1.053 

NGCC_5 NG CC 480 8,997 33.3% 19.44 6.22 46.56 483 0.004 0.082 

NGCT_1 NG CT 199 9,528 100.0% 3.84 5.87 46.80 516 0.009 0.255 

NGCT_2 NG CT 633 11,204 100.0% 5.33 4.12 52.73 607 0.010 0.300 

NGCC_6 NG CC 62 11,626 33.3% 29.54 9.21 58.79 625 0.005 0.105 

NGST_1 NG ST 847 11,987 23.6% 13.47 19.31 70.87 655 0.158 0.832 

NGCT_3 NG CT 74 12,291 100.0% 4.04 36.14 89.52 665 0.011 0.329 

PPST_1 DFO ST 2,177 13,196 23.6% 8.01 31.53 133.14 944 0.928 0.796 

NGST_2 NG ST 447 21,378 23.6% 14.06 43.02 135.85 1168 0.281 1.484 

PPCC_1 DFO CC 87 11,065 33.3% 29.54 9.21 154.65 813 2.510 6.025 

PPST_2 DFO ST 1,162 10,203 23.6% 3.30 75.10 176.71 730 0.718 0.616 

PPCT_1 DFO CT 130 12,600 100.0% 4.65 37.35 202.96 927 0.429 1.721 

PPCC_2 DFO CC 303 9,557 33.3% 9.33 86.62 212.24 702 2.168 5.203 

PPCT_2 DFO CT 50 17,480 100.0% 6.94 198.48 428.24 1281 2.157 4.116 

Wind Wind –  9,000 – 100.0% 232 1.00 1.00 – – – 

OSW OSW – 20,000 – 100.0% 593 2.00 2.00 – – – 

Solar Solar – 50,000 – 100.0% 215 0.00 0.00 – – – 

Hydro Hydro – 3,000 – 100.0% 445 15.00 15.00 – – – 

Storage – – 50,000 – 100% 127 0 0 – – – 
 
Notes 
Unit Types: Steam Turbine (ST), Combined Cycle (CC), Combustion Turbine (CT). 
Fuel Types: Uranium, Natural Gas (NG), Petroleum Products / Distillate Fuel Oil (DFO).  
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3 Selection of Representative Weeks 

Our model requires a set of hourly data which is representative of trends in the New England Region.  

The computation power required to run a joint CEM/EDM over two representative years (17,520 hours) 

is both substantial and infeasible.  So, instead of relying on a full year of hourly data, we instead select a 

subset of weeks which are representative of the complete two-year dataset.   

Methods 
There are many techniques for load sampling but we relied on a variation on the curve-fitting technique 

described in de Sisternes & Webster (2013).viii  This approach selects a set of sample weeks, linearly 

scales that sample to match the number of hours in the full dataset, sorts both sets into duration curves, 

then compares that scaled sample it to the full dataset using an error metric.  The set of weeks used for 

capacity expansion are those which minimize the error metric. This approach creates a set of sample 

weeks which capture: 

1) The overall distribution of the complete dataset. 

2) Week-scale continuous timeframes, which is essential for scheduling energy storage. 

This approach does not ensure, however, that parameters that covary with one-another on seasonal 

timescales are accurately represented.  Given the storage-centric issues at play in our analysis, it is 

preferable to other sampling techniques which identify “typical” weeks or “typical” days, but may not 

capture the full range in seasonal variability, or techniques which rely on sets of single-day samples do 

not allow for capturing how storage may charge or discharge over a multi-day timeframe (e.g. charge on 

the first day, hold charge on second, and discharge on a third day).  

We extend the de Sisternes & Webster approach to allow for the selection of weeks which 

minimizes the error across a range of different parameters, not just hourly load.  The extension is simple 

enough.  Instead of minimizing error between full and sample datasets using the root mean squared 

error (RMSE) metric, we instead minimize parameter-weighted normalized RMSEs (NRMSE).  The lower 

the (N)RMSE, the better the sample approximates the full set.   

Formally, for a given vector parameter 𝑃𝑃 with a complete dataset 𝐶𝐶𝑝𝑝 and a randomly drawn 

sample 𝑆𝑆𝑝𝑝, and a weight of 𝑊𝑊𝑝𝑝, the error metric is:  

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
∑ �𝑊𝑊𝑝𝑝 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝

𝐶𝐶𝑝𝑝���
� �𝑝𝑝

∑ 𝑊𝑊𝑝𝑝𝑝𝑝
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Where,   𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 =  �1
𝑛𝑛
∑ �𝐶𝐶𝑝𝑝,𝑖𝑖 − 𝑆𝑆𝑝𝑝,𝑖𝑖�𝑛𝑛
𝑖𝑖=1

2
 

For this analysis, we relied on the weights presented in Table 2.  These weights were determined 

experimentally.  We identified the best-fitting set of weeks by applying our error metric to 10,000 

randomly selected sets of 13 weeks from the complete two-year (104 week) dataset, comprising all 

hours of 2017 and 2018. This two-year period represents the full set of years where each of the 

variables is fully available. We rely on an iterative random sampling approach instead of a brute-force 

assessment of all possible combinations, because the number of possible combinations is too large to be 

assessed analytically.    

Fit 
Table 2 provides data on the weights of each parameter as well as RMSEs for the best-fitting set of 

weeks. The sample has a peak demand of 24,754 MW – in line with ISO-NE peak demand forecasts for 

the 2020s.  In general, parameters have NRMSEs within a few percent of perfect.  Natural gas prices fit is 

the least-good, in large part due to very high prices on a few winter days.  The goodness-of-fit across 

each assessed parameter can also be visually assessed in duration curve subplots, Figure 1 below.  

Table 2: Sample Fit 
Parameter Units Weight RMSE NRMSE 

Hourly Load MWh 50% 265 0.0199 

Natural Gas Price $/MMBtu 25% 2.904 0.6494 

Solar Profile % 8.33% 0.0125 0.0760 

Wind Profile % 8.33% 0.0238 0.0668 

Off-Shore Wind Profile % 8.33% 0.0160 0.0292 
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Figure 1: Duration Curves by Parameter 
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4 a) Supplemental Figures (RPS isoquants with Relative CPS) 

In the Figures 8-13 of the primary report, we observe that as the RPS rises, the minimum effective CPS 

rises too.   This means that our effective CPS contains two different trends – the underlying escalation in 

minimum effective CPS, and the relative increase in CPS from that minimum.  To better depict CPS-

specific changes, we control for RPS related effects by making two transformations. 

First, we control for the escalation in minimum effective CPS by creating a relative CPS metric 

(effective CPS for a given effective RPS, less minimum effective CPS).  This In effect, this shifts each iso-

quant to the left, until each starts at zero. 

Second, we observed that increasing the RPS (jumping between RPS iso-quant curves) often has 

a bigger effect than increasing the CPS (moving along a given curve).  As we are primarily interested in 

how CPS affect the system (irrespective of RPS level), we control for RPS-related benefits by shifting 

each curve down until its left-post point is set to zero.  This results in a curve which depicts the change in 

a given metric, relative to the RPS-only starting-point.  The combination of these two transformations 

functionally results in us dragging each isoquant from the Figure 8 through Figure 13 down and to the 

left, until the left-most point of each curve is at the origin (0,0). 

Separately, we present a variation on these figures by computing the percentage change in a 

metric (e.g. total cost) from the RPS-only value.  These figures allow for added clarity on the magnitude 

of the observed effects.   
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Figure 1: Total CO2 Emissions by RPS (megatonnes / year) 

 
 
Figure 2: Total Cost of Production by RPS ($bn / year) 

 
 
Figure 3: Marginal Price of Electricity by RPS ($/MWh) 
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Figure 4: Total Fixed Costs ($bn / year) 

 
Figure 5: Total System Cost ($bn / year) 

 
Figure 6: Total Market Cost ($bn / year) 
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b) Supplemental Figures (RPS isoquants with Proportional Effects) 

Figure 1: Percentage Change in Emissions from RPS-Only, due to CPS Adoption 

 
Figure 2: Percentage Change in Total Cost of Production from RPS-Only, due to CPS Adoption 

 
Figure 3: Percentage Change in Marginal Price of Electricity from RPS-Only, due to CPS Adoption 
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Figure 4: Percentage Change in Total Fixed Costs from RPS-Only, due to CPS Adoption 

 
Figure 5: Percentage Change in Total System Cost from RPS-Only, due to CPS Adoption 

 
 
Figure 6: Percentage Change in Total Market Cost from RPS-Only, due to CPS Adoption 
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