

AGO Alternative Storage EAS Revenue Estimates

NEPOOL Markets Committee October 6-8, 2020

Summary & Key Takeaways

- Last month the AGO presented preliminary EAS revenue offsets for energy storage based on a simple optimization model.
 - Found that simple dispatch strategy based on DA prices could increase revenues from energy and TMSR by as much as 40%.
- This month, the AGO offers refined EAS revenue estimates.
 - Model updated to endogenously calculate dispatch and revenues for energy, TMSR, and <u>regulation</u>.
- Results are compared to CEA values and explanations are offered for why AGO values are consistently higher and superior.
- AGO proposed EAS revenue offsets are are 7% higher than CEA assuming FRM is maintained and 20% higher assuming FRM is sunset.

```
Assuming FRM Maintained (2025$): $8,866,214 ($59.11/kW-year)
```

Assuming FRM Sunset (2025\$): \$8,231,249 (\$54.87/kW-year)

AGO optimization model is a more reasonable approach to calculate EAS revenue offsets

Modeling Framework

- MA AGO developed a linear optimization model to simulate hourly battery operation.
 - Developed in Python 3 using PYOMO library and GLPK to solve the problem.
- Inputs: CEA pricing data and battery parameterization
- Outputs: Efficient dispatch schedules and EAS revenues.
- EAS revenues designed to be directly substituted into CEA's DCF model.
- AGO offers the model itself, model outputs, and a memorandum summarizing the model's formulation for committee review.

Model Dispatch Strategy

- Dispatch schedule is developed to maximize revenues from Energy, Regulation, and TMSR (including FRM), based on:
 - (a) known DA energy price curves,
 - (b) an exogenous estimate of TMSR opportunity costs (\$5/MWh),
 - (c) the assumption that battery provides 16.5 MW of regulation in all hours.
- Battery is operated in RT market and earns revenue based on actual RT prices for LMP, TMSR, and Reg.
- Battery <u>does not</u> have foresight of actual RT prices when developing its dispatch and <u>does not</u> update its dispatch based on prevailing RT market conditions.
- Incorporation of expected future TMSR revenue allows storage to reflect cross-product and intertemporal opportunity costs.

Model Results (Summary)

- 1. AGO battery primarily used for reserves & regulation, like CEA.
 - Cycles less than once per day on average (incl. effective cycling for reg.)
- 2. AGO dispatch strategy increases overall revenue by up to \$1.37mm/year, and also increases revenues from *all* products compared to CEA. Three reasons:
 - a) AGO model discharges storage when DA prices indicate highest profits.
 - b) AGO model cycles more frequently, whenever DA prices indicate that cycling is cost effective.
 - c) AGO model includes opportunity costs which allow storage to maximize revenues across products and across time.

Optimized dispatch primarily provides regulation and reserves; < 1 cycle per day.

- ESR provides Reg in all hours.
- ESR has 150 MW TMSR designation in 86.5% hours.
- ESR averages 0.75 cycles per day.

- ESR provides Reg in 94% hours. [1]
- ESR has 150 MW TMSR designation in 89.4% hours.
- ESR averages 0.1 cycles per day.

[1] See CEA September 3, 2020 Draft Report at 85.

Improved storage dispatch increases annual revenues by up to \$1.37 million

Revenue by Product (mm, 2025\$)

Observations

- AGO values are 20% higher assuming FRM is sunset and 7% higher assuming FRM maintained.
- AGO revenue estimates for all products are higher than the equivalent CEA values:
 - Reg higher because AGO assumes battery provides this service in all hours. (CEA assumes reg. provided only when idle.)
 - TMSR higher because AGO model reflects opportunity costs and will try to keep battery full so it can receive a TMSR designation. (CEA's will not recharge until early morning hours if discharged the previous day.)
 - Energy higher because it charges and discharges during optimally based on the DA price curves. (CEA discharges battery whenever prices exceed an annual threshold, even if a higher-priced hour follows.)

CEA battery rarely discharges, so it foregoes many opportunities for incremental revenue.

- AGO optimizes dispatch based on the day-ahead price curves (even though it operates in the RT market).
 - AGO battery discharges during higher priced periods.
- Over a four-day period, 12/31/2017 through 1/3/2018, CEA unit never dispatches.
- AGO unit cycles about once per day in this period.
 - This period does not even include a period where RT prices diverge from DA.
 - When prices happen to diverge, significant revenue potential. E.g., dispatch on 1/4-5/2018 earns ESR \$74.2k.
 - Incidentally, there are instances where AGO battery is dispatched based on DA prices but RT prices are unprofitable. Intraday updating of dispatch should help an ESR owner avoid these losses.

Revenue Comparison for 96 Hour Period (\$000)

	Energy	TMSR	Reg	Total
AGO	\$65.1	\$0	\$33.7	\$98.8
CEA	\$0	\$0	\$33.7	\$33.7
Dif.	\$65.1	\$0	\$0	\$65.1

CEA's lack of opportunity costs leaves battery empty after discharge, foregoing TMSR revenues

- Because AGO model recognizes cross-product and intertemporal opportunity costs, it will dispatch in ways that maximize expected revenues between all products.
- Over a sample 48-hour period, AGO dispatch increases overall revenues by 128%, even though it earns slightly less energy revenue.
- Distribution of TMSR revenues is right skewed, so there is significant optionality associated with a full battery.
 - While AGO median daily TMSR revenue is just \$22/day higher than CEA, *mean* revenue is \$1,167/day higher.

Revenue Comparison for 48 Hour Period (\$000)						
	Energy	TMSR	Reg	Total		
AGO	\$35.0	\$141.7	\$17.2	\$193.8		
CEA	\$38.9	\$44.2	\$10.2	\$105.5		
Dif.	-\$3.9	\$97.5	\$7.0	\$88.3		

AGO estimates reflect revenues available to a reasonably competent storage operator.

- AGO concludes that no reasonable operator would dispatch in the manner proposed by CEA, given ease by which more revenue could be earned.
- AGO approach comports with revenues available to a "reasonably competent" storage operator.
 - It reflects both cross-product and intertemporal opportunity costs.
 - It does not require sophisticated intra-day dispatch strategies or complex forecasting; just the DAM price curves and estimated TMSR opportunity costs.
 - More advanced dispatch schemes could yield revenues in excess of AGO values.
- Thus, AGO proposes alternative EAS revenue estimates of:

Assuming FRM Maintained (2025\$): \$8,866,214 (\$59.11/kW-year)

Assuming FRM Sunset (2025\$): \$8,231,249 (\$54.87/kW-year)

Questions?